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Figure 1: We investigate the impact of an avatar’s fidelity on a bystander’s performance when identifying the avatar’s touch,
mid-air, and eye gaze gestures. We had an abstract avatar (➋) and two more realistic avatars (➌, ➍), which are provided by
Microsoft Research [24] and modified based on our investigation. We use touch, mid-air, and eye gaze gestures performed by
a human in the real world (➊) as our baseline.

ABSTRACT
There are many cases where observing the interactions of a virtual
avatar can be useful. However, it is unclear to what extent the
avatar fidelity affects bystanders’ performance when observing
gestures performed by avatars. We, therefore, conducted an online
study (N=28) with different avatars performing touch, mid-air, and
eye gaze gestures. Our avatars range from an abstract avatar to
two more realistic ones. Our study shows that an abstract avatar
provides bystanders with the same interaction information as more
realistic avatars. This implies that it is sufficient to use abstract
avatar designs when observing interaction behaviour in virtual
environments and researchers do not necessarily need to go through
time-consuming and expensive implementations of highly realistic
avatars to answer their research questions, making Virtual Reality
(VR) studies more accessible to the broader research community.
Finally, we discuss studying VR security systems as a potential
research application for which abstract avatars can be leveraged.
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1 INTRODUCTION
Virtual avatars are used extensively in different research fields such
as gaming [9, 37], education [11, 54, 81], or social virtual environ-
ments (VE) [15, 16, 29, 36, 88]. There is a large body of work that
investigated the perception of virtual avatars (e.g., [62]) or studied
people’s body ownership of a virtual avatar (e.g., [25]). At the same
time, surprisingly little is known about bystanders’1 performance
and perception when observing virtual avatars providing input
with touch, mid-air, and eye gaze. For example, are bystanders
able to distinguish between different mid-air gestures performed

1Note that in contrast to other works (e.g., [27]) that used the term bystander for
Non-HMD users, we use the term bystander when we refer to other users in the same
environment. This can be a person next to a human (in the real world, our baseline) or
a user next to an avatar (in a virtual environment).

https://doi.org/10.1145/3464327.3464329
https://doi.org/10.1145/3464327.3464329
https://doi.org/10.1145/3464327.3464329
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by an abstract avatar? Or do we need highly realistic avatars that
better match with the interactions performed by a human in the
real world? Finding answers to these questions can be particularly
important. The recent restrictions in conducting face-to-face user
studies due the COVID-19 pandemic [52] forced many researchers
to find alternative ways to conduct human-centred research. There
is already work that looked into using VR as a test-bed to, for
example, evaluate user behaviour in front of public displays [39].
However, it remains unclear how avatar designs impact bystanders’
performance and perception when observing corresponding hu-
man gestural movements. If abstract avatars can provide the same
information to other co-located users as highly realistic avatars or
even humans in the real world, then the additional effort required
to set up more realistic avatars can be eliminated; making human-
centred studies in virtual environments (also called “VR studies”
[39, 41, 46, 63]) more accessible to the broader HCI community.
VR studies can also be particularly helpful in times where face-
to-face user studies are challenging to conduct (e.g., not having
access to specific equipment and/or physical locations) [39] or even
prohibited (e.g., due to COVID-19 restrictions) [44].

Our work discusses the results of an online study (N=28) where
participants (in the role of bystanders) watched gestures performed
by a human in the real world (baseline) and by different avatars in a
virtual environment (Figure 1). We expected gestures performed by
more realistic avatars to be easier to identify than those performed
by an abstract avatar; however the difference was found to be
negligible. Our work suggests that easier to create/less resource-
based avatars can already provide researchers with sufficiently
accurate findings and, depending on the research context, lead to
similar research findings as more realistic avatars, thereby reducing
the required effort to leverage VR for human-centred research.

1.1 Contribution Statement
The contribution of our work is threefold:
(1) We explore the impact of avatar fidelity2 on bystanders’ in-

teraction identification performance when performing touch,
mid-air, and eye gaze gestures.

(2) We show through a user study that an abstract avatar design
can already provide bystanders with the same amount of infor-
mation as observing a human in the real world (baseline).

(3) We discuss the implications of our findings in the context of
social VR and propose and discuss studying VR security sys-
tems as a potential application area for which abstract avatars
can be leveraged (see Section 5.2).

2 RELATEDWORK
To guide readers of this work from more general VR research to
more specific avatar-focused research, we first discuss recent works
which leveraged VR studies for human-centred research. We then
review works which studied avatar designs in virtual environments
and users’ perception of different avatars. Finally, we discuss prior
works which investigated the visual identification of human gestu-
ral movements.

2Note that with the term “fidelity” we refer to the extent to which the different avatars
convey the look of a human in the real world (similar to [83]).

2.1 Virtual Reality Studies (“VR studies”)
Prior works on virtual reality research, including the works about
avatar design that we discuss in Section 2.2, and also, for exam-
ple, the different locomotion techniques (see [22] for an overview)
or novel VR interaction techniques (e.g., [3, 7, 74]), provided the
ground work to apply VR studies for more general human-centred
research. For example, there is already research that applied VR to
evaluate user behaviour in front of public displays [39] or studied a
real-world authentication system’s usability and security through
VR replication studies [41]. In the work by Saffo et al. [63] the re-
searchers even proposed remote VR experiments using social VR
platforms to produce practically and ethically valid research results.
Similar to the transition of lab to online studies through surveys
or online platforms, VR studies can further inspire and support
human-centred research in times where face-to-face user studies
are not applicable or challenging to conduct (e.g., having access to
specific physical locations [39]). There is a significant larger body of
research that used VR as a platform for human-centred evaluations
(e.g., [64, 86, 87]) and discussed the strengths and potential pitfalls
of such (remote) VR studies (e.g., [44, 60]).

2.2 Research on Virtual Avatars
2.2.1 Avatars in Virtual Environments. There is a large body of
work on avatars that aimed to understand body ownership and
further effects on psychological theories. Work by Slater et al. [70]
examined the role of the virtual body in immersive virtual environ-
ments and it became clear that, similar to our body in reality, the
virtual body plays a primary role in virtual environments. Partic-
ularly, the virtual body is the representation of self and lays the
foundation of an interaction model for body-centred interactions.
Follow up work by Slater et al. [68] showed that there seems to be
a relationship between body movement and presence, highlight-
ing the importance of semantically appropriate body gestures (e.g.,
head movements) that are considered to be “natural” and can likely
increase users’ presence. In a similar vein, more recent works by,
for example, Piumsomboon et al. [56] showed that the presence of
an adaptive avatar significantly improved social presence and the
overall experience of collaborations in virtual environments.

Merola et al. [45] even argued that “using an avatar is in many
ways like donning a halloween costume” and that avatars can
change users’ behaviour. Saffo et al. [63] also emphasised the im-
portance of the avatar selection in their guidelines for social VR
studies. The findings by Heidicker et al. [29] even suggested that
more abstract avatars (e.g., head and hands only) already produce an
increased feeling of co-presence and behavioural interdependence,
which implies that complete avatar bodies are not necessarily re-
quired in social VR [29] (e.g., see also Mozilla Hubs [47]). That
being said, Gonzalez-Franco et al. [23] have recently argued that
rigged avatars will be key to the future of VR and its wide adoption.
They also open-sourced an avatar library for research and academic
purposes [24], which can further help researchers to adopt VR for
their research. All the previous works emphasise the importance of
avatars in virtual environments.

2.2.2 Perception of Others’ Avatars in Virtual Environments. Work
by Slater et al. [69] explored computer generated audiences of
avatars and how they are perceived when training individuals to
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give speeches. The proposed audience avatars were capable of mov-
ing their heads and came with different facial expressions. Slater et
al. [69] concluded that human subjects respond appropriately to a
negative or positive virtual audience. It has also been argued that
avatars are more effective when perceived as humans. Ströfer et al.
[75] showed that participants’ electrodermal activity differences be-
tween deceivers and truth tellers were only significant when partici-
pants believed they interacted with a human-operated avatar, rather
than a computer-operated avatar. Other work by Nowak and Rauh
[48] suggested that more anthropomorphic avatars are perceived as
more credible than less anthropomorphic avatars. Work by Khan et
al. [33] showed that physically attractive avatars are rated higher on
social competence, social adjustment, and intellectual competence,
and Nowak and Rauh [49] showed that masculinity or femininity
of an avatar significantly influenced the perception of avatars (e.g.,
masculine avatars were perceived as less attractive than feminine
avatars [49]). Other work showed that a cartoon-like avatar cre-
ated stronger co-presence but was less trustworthy than a realistic
avatar [31]. Casanueva and Blake [8] found significant differences
between co-presence generated by realistic human-like avatars,
cartoon-like avatars, and unrealistic avatars, with the human-like
ones achieving the highest sense of co-presence. The works men-
tioned above emphasise the importance of understanding users’
perceptions of different virtual avatars.

2.3 Visual Identification of Human Gestural
Movements

Despite the promising computer vision approaches that aim to anal-
yse human movements (e.g., see [17] for an overview), there is also
research on user-centred approaches where the visual identification
task is performed by a user rather than an algorithm. For example,
the work by Thornton et al. [79] investigated the distance at which
an actor could be placed so that an observer would still be able to
interpret human actions. In their work, users’ action perception re-
mained functional over a large range of distances (within a distance
of 200 m there seems to be little impact of the distance on users’
observation performance) [79]. Fademrecht et al. [13] showed that
users’ recognition performance of human gestures are high (> 66%)
up to 30° of eccentricity and Lapenta et al. [35] even argued that hu-
man action perception is so powerful that movement identification
is possible even in the absence of pictorial information (e.g., texture,
facial expressions). Other work by Gleeson et al. [21] showed that
different hand gestures performed by a robot can be interpreted
with high accuracy by observers. There are some additional works
where the visual identification of human gestural movements plays
an important role (e.g., when observing user interactions to assess a
system’s security [1, 43]). Abdrabou et al. [1], for example, studied
to what extent hand gestures and multimodal approaches (e.g., eye
gaze + hand gestures) can be leveraged for user authentication and
concluded that user interactions based on hand gestures only are
easier to observe than multimodal approaches.

2.4 Summary and Research Gap
From previous research we learned that avatars play an important
role in virtual environments (e.g., see also [84] for a review of studies
using virtual characters). We also learned that Human-computer

Interaction (HCI) researchers started to leverage VR for their non-
VR related research (e.g., to study human behaviour in front of
public displays [39]). Although it has been argued that VR could
be a feasible research tool [39, 41, 86], it can require a significant
amount of additional expertise and effort [39]. For example, many
VR studies require complex setups and additional hardware (e.g.,
OptiTrack systems for finger tracking [34] or Microsoft Kinects for
body tracking [73]). Furthermore, there are many ways to represent
users in VR (e.g., [24, 29, 53]), and it is often not clear which one
best imitates users. It is common to embody avatars of various
appearances ranging from abstract to realistic [50]. Although there
are human-centred works which studied visual identification of
human gestural movements (e.g., [79]), the impact of an avatar’s
fidelity on users’ gesture identification performance seems to be
relatively unexplored.

As a result, we explore in this work the impact of different avatar
fidelities on bystanders’ interaction identification performance. In
other words, we compare howwell different avatars can be observed
when performing touch, mid-air, and eye gaze gestures.

3 PREAMBLE
To find answers to bystanders’ interaction identification perfor-
mance, we covered three different avatars (ranging from an abstract
avatar to a highly realistic avatar by Microsoft Research [24]) and
used a human in the real world as our baseline. We evaluated the
different avatars in front of a public display that allows input with
three inputmethods: touch, mid-air, and eye gaze. All inputmethods
and corresponding gestures are summarised in Table 1. We cover a
wide range of different input methods and gestures, many of which
are frequently used in virtual environments (e.g., touch: [42, 76],
mid-air: [72, 77], eye gaze: [42, 55]). We decided to pre-record the
interactions of both the human in the real world and the avatars in a
virtual environment. We borrowed this approach from researchers
who used video recordings to assess a system’s resistance against
observations (e.g., [4, 10]) or studied human action perception (e.g.,
[35]). Recording the interactions (vs live observations) also enabled
us to conduct the entire study online and provide all participants
with the exact same set of material (i.e., in live observations the
experimenter’s gestures likely vary between participants).

3.1 Apparatus and Implementation
We used Unity 3D (C# as programming language) to set up a virtual
room and the different avatars. The experimenter performed all
interactions outlined in Table 1 in (a) the real world and (b) in the
virtual world. To support the experimenter performing the interac-
tions, we replicated the interface of [32]’s public display to indicate
the gesture direction for touch and mid-air (see also Figure 2). For
eye gaze, moving targets were used as stimulus that move along the
trajectories as outlined in Table 1. This approach is equivalent to
prior work which used moving targets to enable gaze-based interac-
tion (e.g., [32, 82]). All avatars used in our study are tracked through
the VR headset’s position and rotation in the space. Furthermore,
we use a Leap Motion Controller for the finger tracking and the
integrated Tobii eyetracker (together with the Tobii XR SDK [80])
for the eye gaze movement of the avatars. For the more realistic
avatars, we used an avatar provided by Microsoft Research [24]



Mindtrek ’21, June 1–3, 2021, Tampere/Virtual, Finland Mathis et al.

Input method Gesture Number of different Gestures Description

touch left/right 2 Touch gesture to the left/right side.
up/down 2 Up- and downwards touch gesture.

tap 1 Single tap gesture on the screen surface.
mid-air left/right 2 Mid-air gesture to the left/right.

up/down 2 Up- and downwards mid-air gesture.
front 1 Mid-air gesture to the front.

eye gaze linear diagonal 4 Diagonal eye movements (all four directions).
circular CW/CCW 2 Clockwise and counter-clockwise circular eye movements.

zigzag 2 Vertical/horizontal zigzag eye movements.
Table 1: Our set of gestures is based on the work by Khamis et al. [32]. We cover different touch and mid-air gestures and eye
gazemovements (overall 18 unique gestures). We studied 5 gestures for touch andmid-air, and 8 variants for eye gaze gestures.

that we slightly modified based on the purpose of our research. We
calculated the joint angles of the arms using Unity’s Animation Rig-
ging package and Inverse Kinematics (IK) [30] to increase realism
and link the avatar’s hands to the avatar’s body. While this means
we still do not rely on any additional high-end tracking systems (ex-
cept two additional HTC VIVE trackers), implementing the highly
realistic VR avatar requires significantly more expertise and effort
compared to the implementation of the abstract avatar that does
not require any inverse kinematics calculations nor additional HTC
VIVE trackers and is based on simple 3D shapes (i.e., a cube for the
head and three cuboids that are merged together for the body). We
used the same hand asset (i.e., low polygon hands) for all avatars.
We aimed to compare how additional body elements (e.g., arms)
impact identifying users’ interaction, rather than investigating the
impact of different hand assets (and their mesh) on observations.
Furthermore, at the point where we introduce different hand as-
sets, we also introduce an additional confounding variable. It is
also worth to note that the required implementation expertise and
hardware for the finger tracking remains the same for all avatar
designs, independent of the used hand asset.

For the VR headset and to record the interactions in the vir-
tual environment, we used the Tobii HTC VIVE [78], which we
connected to a VR-ready laptop (Razer Blade 15, NVIDIA GeForce
RTX 2080), and OBS [71]. The interactions in the real world were
recorded with a NIKON D5300 single-lens reflex camera.

4 USER STUDY
4.1 Methodology and Study Design
We used Qualtrics [59], an online survey tool that can be accessed
via web browsers, and Prolific [57] to deploy the study online and
evaluate the impact of the avatar representation on bystanders’
interaction identification performance. Prolific is an established
platform for online subject recruitment for scientific purposes and
regularly used for HCI research (e.g., [2, 40]).

Our study was a within-subject experiment with two factors. The
first was the input method, which had three levels: touch, mid-air,
and eye gaze. The second was the avatar that represents the user,
which had four levels: (1) human in the real world (baseline); (2) an
avatar that shows eyes and hands only, similar to avatars used in
social virtual rooms (e.g., Mozilla Hub [47]); (3) an avatar which

included a realistic virtual body and head because previous work
found that gaze is closely associated to head movements under
natural conditions [5, 6, 67] and could thus affect bystanders when
observing interactions; and (4) a full-body avatar where virtual eyes
and hands are attached to a highly realistic avatar.

4.2 Procedure and Task
After obtaining informed consent, we collected demographics (e.g.,
age, gender, prior experience with virtual environments) and fol-
lowed with explainer videos of all three input methods and all 18
gestures to introduce participants to the different input methods
and their task. Figure 2 shows excerpts of the explainer videos
for all three conditions. We used the same camera position and
angle throughout the study. We added attention check questions
to make sure all participants understood (1) the input methods
and (2) their task. We then showed participants pre-recorded in-
teractions performed by a human in the real world or one of the
three avatars in the virtual environment. Conditions were counter-
balanced using a Latin Square. Participants watched the gestures
(e.g., left/right/up/down/tap in touch) once each before providing
a guess. For each observation, we asked participants which ges-
ture they observed. After each avatar, participants had to fill in the
NASA-TLX questionnaire [28] to indicate their perceived workload
when observing the interactions. The same was repeated for the
other input methods. We concluded the study with 5-point Likert
scales and a ranking of the avatars in terms of participants’ prefer-
ence when observing them. We also asked participants to justify
their ranking and participants had the chance to provide additional
feedback. Each participant received £7.5 for their participation. The
study has been approved by the University of Glasgow College of
Science & Engineering Ethics Committee.

4.3 Results
We recruited 28 participants of which all passed the attention check
questions. We had to remove the data of eight participants due
to several reasons. Some of them explicitly mentioned that they
faced some issues with the video playback, while others provided
low-quality feedback throughout the study; indicating that they did
not meaningfully participate. The importance of cleaning data and
removing low-quality responses to increase the ecological validity
has already been discussed in previous work (e.g., [14, 46, 61]). Our
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Figure 2: Participants watched pre-recorded videos where a human in the real world or avatars in a virtual environment per-
formed (a) mid-air gestures, (b) eye gaze movements, and (c) touch gestures. In all interaction identification tasks participants
had access to the same view as depicted in the figures above.

analysis is therefore based on 20 participants (11 male, 9 female,
self-reported) aged between 18 and 54 (M=31.79, SD=10.51). Out of
the 20 participants, 19 (95%) mentioned that they have heard about
the term “Virtual Reality” before and 9 participants (45.0%) voiced
that they had hands-on experience with VR. In the following, we
report on the results of participants’ (a) interaction identification
performance, the number of correctly identified gestures for touch,
mid-air, and eye gaze; (b) perceived workload when observing the
interactions (NASA-TLX questionnaire [28]); (c) preference of the
avatars; and (d) perceived realism of the avatars. Our analysis is
based on (5 touch gestures + 5mid-air gestures + 8 eye gaze gestures)
× 20 participants = 360 observations.

4.3.1 Successful Interaction Identifications. A two-way repeated-
measures ANOVA was conducted to examine the effect of avatar
and input method on participants’ number of successful interac-
tion identifications. In other words, the number of gestures par-
ticipants could successfully guess. Mauchly’s test indicated that
the assumption for sphericity had been violated for avatar × input
method, 𝜒2(20) = 51.244, p<0.05, and input method, 𝜒2(2) = 23.529,

p<0.05. Degrees of freedom were corrected using Greenhouse-
Geisser correction. There was no statistically significant two-way
interaction between avatar and input method on the number of suc-
cessful interaction identifications, F(3.529,67.043)=2.068, p=0.103, and
no main effect of avatar, F(3,57)=0.285, p=0.836, and input method,
F(1.156,21.973)=1.255, p=0.297, on the number of successful interac-
tion identifications. The values are M=14.5 (SD=2.56) for obser-
vations on the real-world user, M=14.6 (SD=2.80) for the abstract
avatar, and M=14.25 (SD=2.97) and M=14.45 (SD=2.65) for the two
more realistic avatars. There is no evidence that observations on
one avatar were more accurate than on the others and that obser-
vations on a human in the real-world were easier/more challenging
than on the avatars. Figure 3 summarises the number of successful
interaction identifications for each avatar and input method.

4.3.2 Perceived Workload. We were particularly interested in par-
ticipants’ perceived workload (NASA-TLX [28]) when observing the
different avatars and the human in the real world. We ran a one-way
repeated-measures ANOVA on participants’ mean perceived work-
load when observing the different avatars and the human in the
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Figure 3: We measured participants’ interaction identification performance and their perceived workload (using NASA-TLX
[28]) when observing virtual avatars performing input with touch, mid-air, and eye gaze. Our analysis does not indicate that
interactions performed by an abstract avatar are easier or more difficult to observe than more realistic avatars and a human
in the real world (baseline). The same was found for users’ perceived workload when observing the different avatars.

real world. Mauchly’s test indicated that the assumption of spheric-
ity had been violated, 𝜒2(5) = 11.712, p<0.05, therefore degrees
of freedom were corrected using Greenhouse-Geisser correction.
There was no statistically significant effect of avatar on partici-
pants’ perceived workload, F(2.138, 40.626)=2.922, p=0.062. The mean
raw NASA-TLX values were low for all four conditions: M=18.74
(SD=8.97) for observing the human in the real world, M=21.75
(SD=13.73) for the abstract avatar, and M=23.06 (SD=14.64) and
M=24.39 (SD=14.12) for the more realistic avatars. There is no evi-
dence that observations on one avatar were more demanding than
on the others; however, participants’ perceived workload is slightly
lower in the real-world condition. Figure 3 shows the mean values
of each NASA-TLX dimension and avatar.

4.3.3 Perceived Avatar Realism. We aimed to understand how the
different avatars are perceived in terms of realism. We did this
through a 5-point Likert scale (i.e., “The avatar’s behaviour matched
real-world human movements.” ). We ran a Friedman test on the 5-
point Likert scale data to investigate participants’ perceived avatar
realism compared to the human in the real world. The analysis is
performed on the level of each input method. For eye gaze, there
was a statistically significant difference in perceived avatar realism
depending on the type of the user representation, 𝜒2(2) = 9.435,
p<0.05. Post hoc analysis with Wilcoxon signed-rank tests was
conducted with a Bonferroni correction applied. Both the more
realistic avatars were perceived as more realistic than the abstract
avatar (p<0.05). The median values are 2.5 for the abstract avatar
and 4.0 for both the more realistic avatars. For mid-air, there was
no statistically significant difference in perceived avatar realism
depending on the type of the user representation, 𝜒2(2) = 1.660,
p=0.436. The median values are 4.0 for all three avatars. The same

was found for touch, 𝜒2(2) = 1.714, p=0.424, with median values
of 4.0 for all three avatars. This suggests that the eyes in the more
realistic avatars were perceived as more realistic compared to the
abstract avatar, but there is no evidence of a significant difference
between the avatars when providing input with mid-air and touch.

4.3.4 Avatar Preference. We asked participants to rank the avatars
based on their preference of observing them (i.e., “Which user
representation made it easier to observe the different interactions
(1=best;4=worst)?”. Raw scores were multiplied by their weight fac-
tor: ×4 for rank 1, ×3 for rank 2, ×2 for rank 3, ×1 for rank 4, and
summed up to compute weighted scores. We then calculated the
average ranking score for each avatar (i.e. real-world user, abstract
avatar, and the two more realistic avatars). The results suggest
that the real-world user achieved the highest score (avg ranking
score=68.33) next to the highly realistic full-body avatar with an
average ranking score of 52. The other more realistic avatar (w/o
arms) and the abstract avatar were ranked similarly with an average
ranking score of 40.67 and 43.33. Participants’ avatar preference is
also reflected in the qualitative feedback that we present below.

4.3.5 Qualitative Feedback. We applied a high-level qualitative
analysis to spot the main themes in users’ qualitative feedback.
The data set was fairly simplistic and small (1-2 sentences for each
question), so one author did all the qualitative data analysis. We
use participant numbers (P1 to P20) to ensure anonymity while
presenting rich raw data from our participants.

When observing the mid-air interactions, there was a general
consensus that the human in the real world was easiest to observe.
Some participants mentioned that they needed arms for clarity
(e.g., “the real-world was easiest for me followed by the [most realistic
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one] which is closest to real-world. I think this is because of the fully
developed arm extension”, P20). Interestingly, the need for arms
was mentioned in combination with the more realistic avatar, but
not with the abstract avatar. This suggests that participants did not
necessarily expect to see arms in the abstract avatar condition, but in
the more realistic avatar designs. The same was mentioned in touch.
Some participants mentioned that all avatars were perceived as easy
to observe (e.g., “they were all easy to identify so any would be fine”,
P1), while one participant, P3, mentioned that “the lack of arms in the
mid-fidelity avatar was off putting”. Contrary to P3’s comment, one
participant, P6, voiced that the “low-fidelity avatar was more obvious
and less distracting as it’s so basic”. However, the general consensus
was that the attached arms helped our participants identifying the
different gestures. One participant mentioned that the movements
in the real world were smoother and that the virtual hands of the
avatars did not come with visual physical feedback: “the physical
feedback of the human hand touching the screen helped me see exactly
what was happening. if the 3D finger bent back a little as it touched
the screen (even if it was in an unrealistic uncanny way) then maybe
that would help”, P9. In eye gaze, participants mentioned that the
human in the real world slightly moved her head when performing
the eye gaze gestures, whereas this seemed to be less present in
the avatars. Other participants mentioned that observing the user’s
real world eye movements was easier compared to the avatars. One
participant explained this around the fact that he is used to seeing
eyemovements from real humans rather than from avatars: “the real
world was the clearest to me. I think because I am most used to seeing
[eye] movements from real humans.”, P20. Another participant, P15,
mentioned that the real-world user blinked, which made it harder
for him to observe eye movements in the real-world condition.

From the overall qualitative feedback we notice that the compar-
isons mostly happened between the real-world user and the avatars.
Surprisingly little differences between the different avatars were
mentioned. However, one point many participants addressed was
the lack of arms in one of the more realistic avatars.

5 DISCUSSION
Our user study suggests that even an abstract avatar’s interactions
are distinguishable by bystanders to the same extent as interactions
performed by a highly realistic avatar and a human in the real world
(Section 4.3.1 and Figure 3). There is also no evidence that observing
one of the avatars leads to higher perceived workload as indicated
by the NASA-TLX questionnaire [28] (Section 4.3.2 and Figure 3).
However, it has to be noted that participants’ perceived avatar
realism, their avatar preference when observing the interactions,
and the qualitative feedback suggest that the more realistic avatars
were preferred over the abstract avatar. Below, we discuss our
findings’ implications in more detail.

5.1 So What? Which Avatar to Use?
The answer is: It depends. It has always been argued that there is no
“swiss-knife” evaluation and that the research questions should in-
form the choice of the research method [26, 66]. In a similar vein, we
argue that it is important to consider the research questions and the
aim of the research when making a decision about the avatar design.
For example, prior research showed that the avatar realism plays an

important role in social settings. There is a large body of work that
showed that the avatar fidelity can have a significant impact on
social interactions (e.g., [16]) and that more realistic avatars evoke
stronger acceptance in terms of virtual body ownership [36]. It is
important to note that the gained benefits of using abstract avatars
might not outweigh the advantages of more realistic avatars in
settings where social interactions and virtual body ownership play
an important role (e.g., in social VR [63, 88]). However, as showed
in our work, abstract avatars can already provide researchers with
valid research findings when it comes to bystanders’ interaction
identification performance. This finding can be particularly bene-
ficial for situations where, for example, researchers evaluate their
systems against observations in virtual environments. VR comes
with many advantages and ground-breaking opportunities (e.g.,
using VR for education purposes [65], for socialising [47], or for
the health sector [20]), but there is also a need to secure users’
interactions from a security and privacy perspective. For example,
what we know from the real world when another human is looking
over someone’s shoulder, also defined as “shoulder-surfing” [12],
could happen in a similar way in virtual environments. Researchers
recently looked into adapting established real-world authentica-
tion schemes for VR [19, 51] or proposed novel VR authentica-
tion schemes [18, 43]. Being able to use abstract avatars instead of
more realistic avatars can be particularly helpful for such “shoulder-
surfing” investigations in VR: they likely reduce the required effort,
expertise, and amount of additional hardware that is required.

Our key message here is that there is great potential for ab-
stract avatar designs in research where social factors play
only a minor role (or can even be ignored). For example, when
investigating users’ identification performance when observing
gestures performed by a virtual avatar, or when pointing or other
gestures are fundamental components of an investigation (e.g., in
the context of collaborative assembly tasks on shared surfaces [38]).
In such research contexts, more abstract avatars can already be
sufficient for researchers’ investigation. Below, we discuss studying
VR security systems as one potential application area for which
abstract avatar designs can be particularly helpful.

5.2 Application: Studying VR Security Systems
There is a large body of work which studied VR security systems
such as PIN/pattern authentication systems [19, 51] or 3D authen-
tication systems [18, 43]. The aim of these systems is to protect VR
users from observations by non-VR users with whom they often
share the same physical space (e.g., see also [27]). In many of these
systems, the resistance to observations, where a bystander attempts
to identify the user’s secret input through observations, is key to
understanding the system’s security. However, there is surprisingly
little research that focused on observations that happen in the vir-
tual environment rather than in the real world. With the works
mentioned above that focus mainly on observations from a non-VR
user, it remains unclear whether the proposed systems are secure
in a shared virtual environment with co-located VR users. Protect-
ing users’ privacy and security against observations within virtual
environments seems to be an important next step as the surge of
VR applications and the availability of high-end untethered VR
headsets (e.g., the Oculus Quest 2) have lead to a notable increase
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of users’ interest in collaborative and social virtual environments
(e.g., to participate in workshops and conferences [47, 88]). While
the virtual environment could freeze (or even hide) the user’s VR
avatar for the duration of sensitive input in such social virtual en-
vironments (e.g., when entering a PIN), doing this will likely affect
other VR users’ experience and co-presence. Although shedding
light on this requires additional investigations, we argue that it is
important to protect (rather than temporarily freeze/remove) users
in virtual environments. Abstract avatars as used in our work could
already enable security and privacy researchers to quickly evaluate
their VR system’s resistance against in-VR observations without
spending significant time and effort on the avatar design, which
in return makes leveraging VR for human-centred studies more
attractive and more accessible to the broader research community.

5.3 Main Takeaways
There are three main takeaways from this work that we would like
to emphasise.

(1) It is inevitable to guide the avatar design by the research
questions and the overall aims of the planned research.

(2) Depending on the research questions, one or the other
avatar design (i.e. abstract or realistic) is to be preferred
and there is no “all-in-one” avatar that fits the purpose of
all investigations.

(3) In situations where the research focus is on, for exam-
ple, identifying different gestures performed by an avatar
(e.g., left/right/up/down/front mid-air gestures), an abstract
avatar design can already support researchers in answering
their research questions without requiring them to rely on
investigations with more realistic avatars.

6 LIMITATIONS AND FUTUREWORK
There were some decisions we made that are worth discussing. The
covered input methods (touch, mid-air, eye gaze) and our studied
gesture set of overall 18 gestures clearly do not cover the entire
spectrum of different input methods and gestures. Although we
selected those that are frequently used in VR, we cannot claim that
our findings will generalise to input methods or gestures beyond
the ones studied in our work. Future work could extend over our
findings by studying other gestures (e.g., user-defined touch ges-
tures) or other input methods (e.g., head-based interaction [58]).
We also used pre-defined observation angles throughout the study
and did not introduce any potential distractions (e.g., additional
bystanders, or in general more vivid environments), see Figure 2.
While such pre-defined observation angles and simulating a so
called “best-case” scenario for observers are commonly used when
studying observations on user inputs (e.g., [4, 10]), different per-
spectives or even providing users with the opportunity to define
their own observation angle might impact our findings. We encour-
age future work to investigate a) how a scenario where observers
can change their position (i.e., distance and angle) impacts identify-
ing interactions performed by avatars and b) to what extent more
vivid contexts (e.g., multiple avatars) impact bystanders’ observa-
tion performance. For example, at the point where some avatar
body parts are hidden from direct eye gaze (e.g., the avatar’s body
covers their hands), corresponding arm movements could support

observers in identifying gestures. Furthermore, although Thornton
et al. [79] argued that the ability to process human action remains
functional over a large range of distances, their reported human
action identification accuracy indeed decreased when actors were
positioned at a larger distance. As a result, it could be interesting
to also incorporate such extreme distances as studied by Thornton
et al. [79] in a follow-up work and shed further light on the impact
of distance and avatar fidelity on an observers interaction iden-
tification performance. However, it is important to keep in mind
that such extreme distances as studied by Thornton et al. [79] (up
to 1000 m) are rather unlikely to be experienced in virtual envi-
ronments. Finally, although we used a highly realistic avatar by
Microsoft Research [24], we did not consider blinking eyes and/or
facial expressions in this work. Future work could investigate to
what extent such additional factors (e.g., facial expressions captured
through VIVE’s Facial Tracker [85]) affect bystanders’ interaction
identification performance and perceived workload when observing
different avatar designs.

7 CONCLUSION
Through an online user study (N=28), we explored the impact of dif-
ferent avatars (one abstract avatar and two more realistic avatars)
on bystanders’ interaction identification performance when ob-
serving touch, mid-air, and eye gaze gestures. The difference of
participants’ performance and perceived workload when observing
a user in the real world, an abstract avatar, and two more realistic
avatars was found to be negligible. However, it is important to note
that more realistic avatars are required in situations where, for ex-
ample, realism and other social factors play an essential role. That
being said, if the research focus is solely on the interaction, abstract
avatars can already represent users in virtual environments; there-
fore, researchers do not necessarily need to rely on resource-heavy
and expensive avatar implementations that often require additional
hardware (e.g., motion tracking systems).
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