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Abstract
With the increasing adoption of virtual reality (VR) in pub-
lic spaces, protecting users from observation attacks is
becoming essential to prevent attackers from accessing
context-sensitive data or performing malicious payment
transactions in VR. In this work, we propose RubikBiom,
a knowledge-driven behavioural biometric authentication
scheme for authentication in VR. We show that hand move-
ment patterns performed during interactions with a knowledge-
based authentication scheme (e.g., when entering a PIN)
can be leveraged to establish an additional security layer.
Based on a dataset gathered in a lab study with 23 par-
ticipants, we show that knowledge-driven behavioural bio-
metric authentication increases security in an unobtrusive
way. We achieve an accuracy of up to 98.91% by applying
a Fully Convolutional Network (FCN) on 32 authentications
per subject. Our results pave the way for further investi-
gations towards knowledge-driven behavioural biometric
authentication in VR.
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Introduction
Virtual reality (VR) is becoming more and more popular due
to its affordability and portability. Untethered head-mounted
displays (HMDs) such as the Oculus Quest [32] contribute
to an increasing interest in VR across a larger population.
However, new interaction methods present opportunities
for attackers as non-technology savvy users might be over-
whelmed by such new technologies and underestimate pos-
sible threats.

Figure 1: RubikBiom introduces
knowledge-driven behavioural
biometric authentication and
leverages the concepts of a)
knowledge-based authentication
(e.g., entering a PIN) and b)
biometric-based authentication
(e.g., human movement patterns)
by detecting human-behavioural
movement patterns during users’
authentications.

This is crucial in situations where users have to authenti-
cate to access confidential data or enter credentials such
as PINs [20] to perform transactions. Users are often un-
aware of bystanders [10], especially whilst being immersed
in VR [14, 27], who were shown to be able to infer the VR
user’s input (e.g., PINs) [14, 16, 40]. As researchers and
practitioners in VR are very keen in creating immersive and
mature technologies to increase users’ experience and em-
bed such novel technologies into our mundane life [18, 36],
research to protect actual users against attacks (e.g., ob-
servation attacks, guessing attacks, or video attacks where
attackers record and play back user’s authentication [8, 15])
is still limited. RubikBiom protects users from such attacks
even if attackers have access to the correct secret as it pro-
vides users with an additional security layer.

To our knowledge, RubikBiom is the first exploration into the
use of knowledge-driven behavioural biometric authentica-
tion in VR (Fig. 1) in combination with deep learning (DL).
RubikBiom makes successful attacks less common as an
attacker has to a) derive the secret a user entered and b)
precisely replicate the user’s behaviour.

Our contribution is two-fold. First, we show that human be-
havioural biometrics collected during knowledge-driven nat-
ural asymmetrical bimanual cooperation [19] are promis-
ing for establishing an additional security layer in VR by

applying state-of-the-art deep learning architectures for
time series classification (TSC) [21]. Second, we propose
knowledge-driven behavioural biometric authentication, a
novel promising direction for authentication in VR.

Background and Related Work
Knowledge-based Authentication in VR
Existing approaches to improve authentication in VR rely
on knowledge-based authentication such as entering a PIN
or pattern [12, 15, 17, 40]. However, at the point where at-
tackers derive entire secrets based on observations, they
can access private data or make them publicly available.
George et al. [17] investigated the direct transfer of well-
established authentication schemes into VR. Their study
showed that attackers could derive 18% of users’ PINs and
patterns through observations. Similarly, Yu et al. [40] high-
lighted that most people can guess the input from watching
videos showing a user authenticating in VR.

Behavioural Biometric Authentication in VR
Recent research shows that it is possible to improve secu-
rity of VR users by tracking users’ movements when per-
forming natural goal-oriented tasks in VR environments.
For instance, Kupin et al. [25] showed that it is possible
to authenticate users solely on throwing a ball within the
virtual environment. In their pilot study they achieved a
matching accuracy of up to 92.86%. Similarly, Yi et al. [39]
leveraged head movement patterns for authentication in VR
and achieved an authentication accuracy of 92%. However,
Mustafa et al. [28] recommend to use such functionality as
an added layer of security in security-sensitive VR applica-
tions as pure behavioural biometrics might not be feasible in
a large scale setting. This is inline with findings from Pfeuf-
fer et al. [29] who highlight the logarithmic decrease of ac-
curacy with increasing group size, thus, making behavioural
biometrics on its own not feasible for authentication in VR.



Based on findings and lessons learnt from previous works
[12, 15, 17, 25, 28, 29, 39, 40], we focus on the combination
of a knowledge-based authentication scheme and corre-
sponding human behavioural biometrics to increase secu-
rity against observations. We apply DL on users’ movement
patterns during their knowledge-based authentication to
make authentications more resistant to attacks (e.g., obser-
vation attacks, guessing attacks) in an unobtrusive way.

Concept
To evaluate the suitability of human behavioural biometrics
collected during knowledge-based authentication, we de-
veloped RubikBiom, a novel authentication scheme in VR
(Fig. 2). RubikBiom is based on Guiard’s kinematic chain
model [19] that incorporates human asymmetrical biman-
ual cooperation. This means that user’s non-dominant hand
controls the pose of RubikBiom and user’s dominant hand
performs the pointing and selection. The benefits of apply-
ing Guiard’s kinematic chain model are three-fold. It is a)
a natural way of two-handed interaction [6, 22] and takes
human skills into account that are already in place [22], b)
adds complexity to observation attacks as attackers have
to observe multiple interactions simultaneously [9], and c)
allows leveraging human behavioural biometrics such as
hand movements for authentication in VR. Users enter a
4-digit RubikBiom PIN by tapping on the corresponding dig-
its and confirming the selection by pressing the HTC VIVE
trigger button. Each PIN consists of 4 digit/surface combi-
nations, e.g., 1 (green), 2 (white), 1 (red), 8 (white).

Figure 2: Users select their
RubikBiom PIN by tapping with the
dominant handheld controller on
the cube that is attached to their
non-dominant handheld controller.

Figure 3: Participants entered the
same set of PINs that were directly
visualised on the cube using white
digits on a black background.

User study
The aim of this study is to investigate the feasibility of hu-
man behavioural biometrics (e.g., hand movements) for
knowledge-driven authentication in VR and to collect these
for the following evaluation.

Demographics
We collected hand movements from 23 participants (13 fe-
males, 10 males) aged between 18 and 54 years (µ=27.65,
σ=8.26) within a lab study. Participants were recruited via
internal university mailing lists. Most of them were students
or staff members with a technical background. Half of our
participants (52%) used VR at least once.

Data Collection
During each authentication, we capture feature information
regarding the Cartesian values (x,y,z) and Unity’s Quater-
nion (i.e., rotations in 3D space) [33] of users’ dominant
(DH) and non-dominant hand (N-DH).

Procedure
We introduced participants to RubikBiom and ran training
sessions before actually tracking their movements. Partic-
ipants then entered 12 RubikBiom PINs. All participants
entered the same set of RubikBiom PINs four times each (4
repetitions×12 PINs = 48 authentications). We highlighted
the PINs the participants have to enter directly on Rubik-
Biom (Fig. 3). Participants were compensated by £8.

Apparatus
We used Unity C# for the implementation of RubikBiom and
data collection. As head-mounted display, we used an HTC
VIVE (2160 × 1200 px) and SteamVR Plugin for controller
communication. For applying the deep learning architec-
ture, we built upon Ismail Fawaz et al.’s implementation [21]
using Keras 2.2.4 [7] based on the TensorFlow backend.

Data Processing
In total, we collected human behavioural biometrics from 23
participants who performed 48 trials each, making it a total
of 1104 authentications. We pre-processed our dataset and
splitted it into a training (36 authentications, 75%) and a test
dataset (12 authentications, 25%) for each user [24].



Top-1 Accuracy
Feature Dimensions MLP FCN ResNet Encoder MCDCNN Time-CNN

DH Rotation 3 59.42% 83.33% 83.33% 51.45% 64.86% 51.09%
DH Position 3 48.55% 89.13% 89.86% 40.94% 68.48% 51.81%

N-DH Rotation 3 44.93% 73.19% 75.00% 31.16% 45.29% 48.19%
N-DH Position 3 64.13% 96.01% 93.84% 59.06% 81.16% 60.15%

DH Position + Rotation 6 88.04% 97.10% 95.65% 78.99% 90.94% 81.52%
N-DH Position + Rotation 6 89.86% 97.82% 97.10% 84.42% 92.03% 79.35%

DH Rotation + N-DH Rotation 6 70.29% 94.57% 96.01% 67.39% 78.26% 68.84%
DH Position + N-DH Position 6 85.15% 98.19% 97.46% 72.10% 92.03% 53.99%
DH/N-DH Position + Rotation 12 92.39% 98.91% 98.55% 88.41% 93.84% 90.58%

Mean Accuracy 71.42% 92.03% 91.87% 63.77% 78.54% 65.05%

Table 1: We calculated the top-1 classification accuracies. A Fully Convolutional Network (FCN) and a Residual Neural Network (ResNet)
achieved the highest accuracies with 98.91% and 98.55%, respectively. Bold and italic denote category 1st and 2nd best, respectively.

We block-randomised the order of the authentications to
reduce variance and overfitting [3]. Our multivariate time
series (MTS) test dataset is a holdout dataset as we did
not use it for training. The data follows a natural temporal
ordering as it depicts human movements over time. This
represents a TSC problem that has been considered as one
of the most challenging problems in data mining [11, 37].
Similar to recognising human activity where the concept of
TSC is widely applied [34], we classify users based on their
hand movements during authentications.
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Figure 4: In RubikBiom, we
experimented with M = 3, 6, and
12 features and with a time series
length of 13 time stamps×50 ms
each time stamp = 0.65 s.

We structured our data in a way that each instance depicts
one dimension (e.g., x-value of the DH position) for each
time stamp (Fig. 4). We adopted the six most promising
state-of-the-art DL architectures [21] for our TSC problem
and trained 9 datasets × 6 DL architectures = 54 models.
Our aim is to enhance the security of authentications in VR
by distinguishing the user’s behaviour from that of attack-
ers when entering identical PINs. We used the hyperpa-
rameters for deep learning architectures provided by Ismail
Fawaz et al. [21] in their public repository (Table 2).

Metrics
Similar to previous work [29], we report top-1 classification
accuracies (i.e., number of correct classifications divided
by the total number). All our datasets are balanced as the
number of authentications is the same for each class (user).
An architecture that predicts the outcome solely based on
random guesses would achieve an accuracy of 4.35% (1
out of 23 users).

Results
Table 1 shows the top-1 classification accuracies of the six
deep learning architectures that we applied on our multi-
variate datasets. A Fully Convolutional Network (FCN) [35]
achieved overall the best accuracy (98.91%) and achieved
the highest accuracy when leveraging users’ dominant hand
position + rotation together with users’ non-dominant hand
position + rotation. Increasing the number of dimensions
results in more accurate results, and thus, avoids false neg-
atives. Note that false negatives can only happen in Rubik-
Biom when a user entered the correct PIN in a step before.



Figure 5: The classification accuracies represent a direct variation. The number of dimensions we use to train our models varies directly with
the classification accuracy. This suggests that leveraging more dimensions results in higher classification accuracies. The graph depicts the
direct variation across all DL architectures. All reported accuracies are mean values of clustered accuracies in Table 1.

When training a model on one feature (e.g., DH rotation) we
achieved accuracies between 31.20% and 89.86% whereas
two features (e.g, DH position and rotation) resulted in ac-
curacies of 67.40% to 98.19%. Leveraging four features
(e.g., DH + N-DH position and rotation) resulted in even
higher accuracies of 88.41% to 98.91%. Figure 5 shows
these increases of accuracies that follow a direct variation.

Architecture Optimizer

MLP AdaDelta
FCN Adam

ResNet Adam
Encoder Adam

MCDCNN SGD
Time-CNN Adam

Loss Epochs|LR

Entropy 5000|1.0
Entropy 2000|0.001
Entropy 1500|0.001
Entropy 100|0.00001
Entropy 200|0.01

MSE 2000|0.001

Table 2: Hyperparameters for the
deep learning approaches used in
our study.

Lessons Learnt and Discussion
Following a knowledge-driven behavioural biometric ap-
proach for user authentication in VR yielded promising re-
sults with classification accuracies up to 98.91% (N=23).
This is noticeably higher than in previous works with a
matching accuracy of 92.86% (N=14) [25] and 63.55%
(N=22) [29]. This highlights the security benefits of apply-
ing DL on human behavioural biometrics collected during
knowldge-driven authentication where a user enters their
4-digit PIN on RubikBiom (Figure 2). As shown in Table 1
and Fig. 5, multi-feature datasets (e.g., DH Position + Rota-
tion) result in more accurate top-1 classification accuracies
compared to single-feature datasets (e.g., DH position).

The Future of Authentication in VR
Previous research transferred knowledge-based authen-
tication schemes into VR [15, 16, 40] or leveraged head
movements [2, 28], hand movements [2, 25, 29], or gait
signatures [31] for authentication in VR. In the case of be-
havioural biometric authentication [2, 25, 28, 29, 31], the
direction is quite clear as researchers try to eliminate ex-
plicit authentication. This is mainly attributed to the fact
that authentication is a secondary task users have to go
through (e.g., unlocking a device) before being able to per-
form a main task (e.g., interacting in VR) [30]. However, it
has been argued that behaviour biometrics should be used
to enhance knowledge-based schemes for VR rather than
replace them [28, 29], especially because behaviour might
not be unique for a large group size.

Although using fingerprints for authentication found its ap-
plication (e.g., to unlock a smart phone), they remain a
challenge as they cannot be changed and there are fears
about how this data could be abused [13, 26]. Following a
knowledge-driven behavioural biometric authentication ap-
proach as presented with RubikBiom protects users from



attackers in a seamless and unobtrusive way in different
contexts. Note that fingerprints, facial recognition, or voice
patterns might not work in situations where users are ex-
posed to high humidity, different lighting conditions, or noisy
environments [1, 4, 5]. For these reasons, it is important to
investigate the potential of knowledge-driven behavioural
biometric authentication. In particular, future authentication
systems could leverage additional metrics (e.g., eye move-
ments) to expand the input space for authentication in VR.
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Adaptive Authentication
RubikBiom’s aim is to make authentication more secure
against attacks (e.g., observation attacks, guessing at-
tacks, video attacks) by introducing an additional human
behavioural security layer. However, protecting users with
an additional security layer may affect usability. Previous
research highlighted the importance of incorporating con-
textual factors such as different environments and/or hu-
man factors when designing and developing authentication
schemes [23]. A knowledge-driven behavioural biometric
authentication scheme such as RubikBiom can deactivate
the additional behavioural biometric security layer easily
in a context where observation attacks might not occur as
frequent as in public spaces (e.g., at home). This raises fur-
ther interesting questions, for instance: in which contexts do
users prefer such an additional security layer?

In future work we plan to investigate long-term usage of
knowledge-driven biometric authentication schemes to in-
vestigate users’ usage of such a system and investigate
how a knowledge-driven biometric approach affects usabil-
ity and security in a real-world use case with multiple au-
thentications over time. We believe that knowledge-driven
biometric authentication systems are promising for future
adaptive authentication schemes that contribute to more se-
cure systems without negatively affecting users’ experience.

Limitations
Our results are based on a user study that incorporates Ru-
bikBiom and requires two-hand interactions. Two-handed
interaction might not be suitable for users with motor dis-
abilities. To work towards hands-free interactions that are
accessible for a larger population, alternative knowledge-
driven biometric authentication schemes could train models
based on eye or head movements.

Moreover, we experimented with a time series length of 13
time stamps×50 ms each time stamp = 0.65 s. Higher fre-
quencies might affect architectures’ performance and result
in even higher classification accuracies [38]. Yet, leverag-
ing longer time series for user classification implies that we
have to rely on longer authentication times. Authentication
is perceived to be a secondary task and should therefore
be fast and effortless [30]. Follow-up work could experiment
with different time series lengths to study its effect on clas-
sification accuracy.

Conclusion
In this paper, we introduced RubikBiom, a knowledge-
driven biometric authentication scheme for user authenti-
cation in VR. We collected human behavioural biometrics
from 23 participants and applied current state-of-the-art
deep learning architectures for time series classification.
We trained 56 models on nine different features and six
deep learning architectures. We found that a Fully Convo-
lutional Network (FCN) is the most accurate architecture
with a classification accuracy of up to 98.91%. Our results
provide first insights into applying deep learning for time
series classification within the context of authentication in
VR. We conclude that the use of human behavioural bio-
metrics greatly enhances the security in a seamless and
unobtrusive way and introduces a new direction for future
authentication schemes in VR.
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Authentication — Security and Usability. Springer US,
Boston, MA, 227–239. DOI:
http://dx.doi.org/10.1007/978-0-387-35612-9_17

[27] Mark McGill, Daniel Boland, Roderick Murray-Smith,
and Stephen Brewster. 2015. A dose of reality:

Overcoming usability challenges in vr head-mounted
displays. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.
ACM, 2143–2152. DOI:
http://dx.doi.org/10.1145/2702123.2702382

[28] Tahrima Mustafa, Richard Matovu, Abdul Serwadda,
and Nicholas Muirhead. 2018. Unsure How to
Authenticate on Your VR Headset?: Come on, Use
Your Head!. In Proceedings of the Fourth ACM
International Workshop on Security and Privacy
Analytics (IWSPA ’18). ACM, New York, NY, USA,
23–30. DOI:
http://dx.doi.org/10.1145/3180445.3180450

[29] Ken Pfeuffer, Matthias J. Geiger, Sarah Prange, Lukas
Mecke, Daniel Buschek, and Florian Alt. 2019.
Behavioural Biometrics in VR: Identifying People from
Body Motion and Relations in Virtual Reality. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 110, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300340

[30] M. A. Sasse, S. Brostoff, and D. Weirich. 2001.
Transforming the ‘Weakest Link’ — a
Human/Computer Interaction Approach to Usable and
Effective Security. BT Technology Journal 19, 3 (01 Jul
2001), 122–131. DOI:
http://dx.doi.org/10.1023/A:1011902718709

[31] Y. Shen, H. Wen, C. Luo, W. Xu, T. Zhang, W. Hu, and
D. Rus. 2019. GaitLock: Protect Virtual and
Augmented Reality Headsets Using Gait. IEEE
Transactions on Dependable and Secure Computing
16, 3 (May 2019), 484–497. DOI:
http://dx.doi.org/10.1109/TDSC.2018.2800048

http://dx.doi.org/10.1145/3003733.3003764
http://dx.doi.org/10.1145/3290607.3312928
http://dx.doi.org/10.1007/978-3-030-05710-7_5
http://dx.doi.org/10.1007/978-0-387-35612-9_17
http://dx.doi.org/10.1145/2702123.2702382
http://dx.doi.org/10.1145/3180445.3180450
http://dx.doi.org/10.1145/3290605.3300340
http://dx.doi.org/10.1023/A:1011902718709
http://dx.doi.org/10.1109/TDSC.2018.2800048


[32] Facebook Technologies. 2019a. Oculus Quest -
All-in-One-VR. (2019).
https://www.oculus.com/quest/

[33] Unity Technologies. 2019b. Quaternions in Unity 3D.
(2019). https://docs.unity3d.com/Manual/
QuaternionAndEulerRotationsInUnity.html

[34] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui
Peng, and Lisha Hu. 2019. Deep learning for
sensor-based activity recognition: A survey. Pattern
Recognition Letters 119 (2019), 3 – 11. DOI:
http://dx.doi.org/https:
//doi.org/10.1016/j.patrec.2018.02.010 Deep
Learning for Pattern Recognition.

[35] Z. Wang, W. Yan, and T. Oates. 2017. Time series
classification from scratch with deep neural networks:
A strong baseline. In 2017 International Joint
Conference on Neural Networks (IJCNN). 1578–1585.
DOI:
http://dx.doi.org/10.1109/IJCNN.2017.7966039

[36] Julie R. Williamson, Mark McGill, and Khari Outram.
2019. PlaneVR: Social Acceptability of Virtual Reality
for Aeroplane Passengers. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). ACM, New York, NY, USA, Article
80, 14 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300310

[37] QIANG YANG and XINDONG WU. 2006. 10
CHALLENGING PROBLEMS IN DATA MINING
RESEARCH. International Journal of Information
Technology & Decision Making 05, 04 (2006),
597–604. DOI:
http://dx.doi.org/10.1142/S0219622006002258

[38] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston
Zhang, and Tarek Abdelzaher. 2017. DeepSense: A
Unified Deep Learning Framework for Time-Series
Mobile Sensing Data Processing. In Proceedings of
the 26th International Conference on World Wide Web
(WWW ’17). International World Wide Web
Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland, 351–360. DOI:
http://dx.doi.org/10.1145/3038912.3052577

[39] S. Yi, Z. Qin, E. Novak, Y. Yin, and Q. Li. 2016.
GlassGesture: Exploring head gesture interface of
smart glasses. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer
Communications. 1–9. DOI:
http://dx.doi.org/10.1109/INFOCOM.2016.7524542

[40] Z. Yu, H. Liang, C. Fleming, and K. L. Man. 2016. An
exploration of usable authentication mechanisms for
virtual reality systems. In 2016 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS).
458–460. DOI:
http://dx.doi.org/10.1109/APCCAS.2016.7804002

https://www.oculus.com/quest/
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1145/3290605.3300310
http://dx.doi.org/10.1142/S0219622006002258
http://dx.doi.org/10.1145/3038912.3052577
http://dx.doi.org/10.1109/INFOCOM.2016.7524542
http://dx.doi.org/10.1109/APCCAS.2016.7804002

	Introduction
	Background and Related Work
	Knowledge-based Authentication in VR
	Behavioural Biometric Authentication in VR

	Concept
	User study
	Demographics
	Data Collection
	Procedure
	Apparatus
	Data Processing
	Metrics

	Results
	Lessons Learnt and Discussion
	The Future of Authentication in VR
	Adaptive Authentication

	Limitations
	Conclusion
	REFERENCES 

